研究者詳細

研究発表
分割表示   全件表示 >>

48 件中 21 - 30 件目

年度
Year
題目又はセッション名
Title or Name of Session
細目
Authorship
発表年月(日)
Date
発表学会等名称 Name, etc. of the conference at which the presentation is to be given, 主催者名称 Organizer, 掲載雑誌名等 Publishing Magazine,発行所 Publisher,巻/号 Vol./no.,頁数 Page nos.
2016  A simple cylindrical distribution and its applications  単独  2017/3/6 
High Dimensional Statistical Analysis for Time Spatial Processes & Quantile Analysis for Time Series  , Taniguchi Masanobu   

概要(Abstract)  

備考(Remarks)  

2016  Symmetric circular distributions and their sine-skewed extensions  単独  2017/3/3 
Statistical Analysis for High-Dimensional, Circular or Time Series Data  , Shiraishi Hiroshi   

概要(Abstract)  

備考(Remarks)  

2016  方向統計学における統計的分布とその推測  単独  2016/2/20 
OR中部支部   

概要(Abstract)  

備考(Remarks)  

2016  A simple cylindrical model as a combination of the Weibull and sine-skewed von Mises distributions  単独  2016/12/11 
9th International Conference of the ERCIM WG on Computational and Methodological Statistics  , CMStatistics 2016   

概要(Abstract) A cylindrical model is considered obtained by combining the sine-skewed von Mises distribution with the Weibull distribution. The WeiSSVM model has numerous good properties such as simple normalizing constant, and hence very tractable density, parameter-parsimony and interpretability, maximum entropy characterization, good circular-linear dependence structure, easy random number generation thanks to known marginal/conditional distributions, and flexibility illustrated via excellent fitting abilities. As an illustrative example, our model is applied in analyses of periwinkle data set. 

備考(Remarks)  

2016  Weibull分布とsine-skewed von Mises分布を用いたシリンダー上の分布の生成  単独  2016/11/8 
複雑な生命現象を読み解くための大規模データ解析とモデリング  , 植木優夫   

概要(Abstract)  

備考(Remarks)  

2015  Length dependent models for cylindrical data through sine skewed wrapped Cauchy distribution  単独  2015/12/14 
8th International Conference of the ERCIM WG on Computational and Methodological Statistics  , CMStatistics 2015   

概要(Abstract) There has been an increased interest towards to the cylindrical distributions in recent years. The combination of direction and length, such as a pair of wind direction and its strength, can be regarded as the cylindrical data. Although some cylindrical models are well known, there are a few cylindrical models compared with the circular models. In this talk, we propose another class of cylindrical distributions on a bounded domain that combine circular and Beta type distributions with certain dependence structure. The model has the simple normalizing constant. As a special case, we propose a cylindrical distribution that has a structure of the Kumaraswamy and sine-skewed wrapped Cauchy distributions. The advantages of such the selection are a general form of the trigonometric moments, simple generation of random number and explicit form of the mode. 

備考(Remarks)  

2015  A cylindrical model for wind direction and velocity  単独  2015/11/05 
Adolphe Quetelet Seminar Series  , Ghent University   

概要(Abstract) In this talk, I proposed length dependent cylindrical models for wind data. In many cases, the distribution of the wind direction around sea coast has two modes. For this purpose, I gave a review of some circular distributions generated by perturbation of the symmetric circular distributions. Then by combining the existing methods, cosine-perturbation and sine-skewing, I proposed a good fitting model for the wind direction. Then making use of the recently introduced method by Abe \& Ley, I introduced a new class of cylindrical models. The mathematical properties of the model was also investigated. As an illustrative example, I considered the parameter estimation of our model for the wind directions and speeds at Namie district.  

備考(Remarks)  

2015  シリンダー上の確率分布とその周辺  単独  2015/09/15 
日本数学会2015年度秋季総合分科会  , 日本数学会   

概要(Abstract) 本講演では, 前半では円周分布の発展について述べ, 後半ではこれらを基にしたシリンダー分布について報告した. まずはじめに, 線形の統計学と性質が異なる角度データに対する
平均方向と平均合成ベクトル長, 円周分布の確率密度関数を定義する. 次に, 既存の対称な円周分布, 近年研究が盛んになってきている非対称な円周分布, そして, 検定手法を紹介した. 後の比較のために, 既存のシリンダー上の分布も紹介し, ある性質を示すデータに対して, 単純で扱いやすいシリンダー上の分布を生成した.
また, blue periwinkleの(移動方向, 移動距離)のデータに対して, 提案分布をパラメータ推定した例も紹介した.  

備考(Remarks)  

2015  ベータ型の分布を用いたシリンダー分布  単独  2015/09/08 
2015年度統計関連学会連合大会   

概要(Abstract) (風向, 風力)の組のような角度と大きさの組のデータは
シリンダー上のデータとみなすことができる. このようなデータの例はBreckling (1989)等で見ることができる. 本報告では, 既存の円周分布と実軸上の分布を組み合わせ, 新しいシリンダー分布を提案した.  

備考(Remarks)  

2014  モード不変性を持つ逆Batschelet分布  単独  2015/03/14 
応用統計学会2015年度年会   

概要(Abstract)  

備考(Remarks)  

Page: [<<PREV] [1] [2] [3] [4] [5] [NEXT>>]